Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors
نویسندگان
چکیده
It is well known in the statistics literature that augmenting binary and polychotomous response models with gaussian latent variables enables exact Bayesian analysis viaGibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favor of gaussian process (GP) priors over functions, and employing variational approximations to the full posterior, we obtain efficient computational methods for GP classification in the multiclass setting.1 The model augmentation with additional latent variables ensures full a posteriori class coupling while retaining the simple a priori independent GP covariance structure from which sparse approximations, such as multiclass informative vector machines (IVM), emerge in a natural and straightforwardmanner. This is the first time that a fully variational Bayesian treatment formulticlass GP classification has been developed without having to resort to additional explicit approximations to the nongaussian likelihood term. Empirical comparisonswith exact analysis use Markov Chain Monte Carlo (MCMC) and Laplace approximations illustrate the utility of the variational approximation as a computationally economic alternative to full MCMC and it is shown to be more accurate than the Laplace approximation.
منابع مشابه
vbmp: Variational Bayesian Multinomial Probit Regression for multi-class classification in R
SUMMARY Vbmp is an R package for Gaussian Process classification of data over multiple classes. It features multinomial probit regression with Gaussian Process priors and estimates class posterior probabilities employing fast variational approximations to the full posterior. This software also incorporates feature weighting by means of Automatic Relevance Determination. Being equipped with only...
متن کاملCS535D Project: Bayesian Logistic Regression through Auxiliary Variables
This project deals with the estimation of Logistic Regression parameters. We first review the binary logistic regression model and the multinomial extension, including standard MAP parameter estimation with a Gaussian prior. We then turn to the case of Bayesian Logistic Regression under this same prior. We review the cannonical approach of performing Bayesian Probit Regression through auxiliary...
متن کاملNested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood
We consider probabilistic multinomial probit classification using Gaussian process (GP) priors. The challenges with the multiclass GP classification are the integration over the non-Gaussian posterior distribution, and the increase of the number of unknown latent variables as the number of target classes grows. Expectation propagation (EP) has proven to be a very accurate method for approximate...
متن کاملMultinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data
We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior...
متن کاملMulti-class Semi-supervised Learning with the e-truncated Multinomial Probit Gaussian Process
Recently, the null category noise model has been proposed as a simple and elegant solution to the problem of incorporating unlabeled data into a Gaussian process (GP) classification model. In this paper, we show how this binary likelihood model can be generalised to the multi-class setting through the use of the multinomial probit GP classifier. We present a Gibbs sampling scheme for sampling t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Computation
دوره 18 شماره
صفحات -
تاریخ انتشار 2006